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Key Points.

◦ Tropical low cloud feedback is esti-

mated using observed relationships be-

tween albedo and environment

◦ Present-day relationships between albedo

and environment imply positive feedbacks

with warming

Varying responses of tropical low clouds to3

warming are at the heart of diversity in esti-4

mates of climate sensitivity obtained from mod-5

els. This study estimates the likely response6

independently, using observations of albedo7

and environmental conditions obtained from8

satellites and meteorological reanalysis on the9

daily time at which clouds respond to their10

environment. Statistical models are developed11

describing the relationships between albedo12

and the atmospheric conditions known to con-13

trol it. These relationships are applied to the14

change in those atmospheric conditions expected15

with surface warming, as inferred from climate16

model experiments. Observed relationships pre-17

dict dimmer tropical clouds with warming –18
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a positive feedback on climate – at 2-4 times19

the rate inferred from simulations alone.20
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1. Seeking observational constraints on low cloud climate feedbacks

Cloud feedbacks have been identified as one of the greatest sources of uncertainty in21

estimates of climate sensitivity since the very first assessments [Charney et al., 1979].22

Within the last decade it has become clear that tropical low clouds, in particular, are23

central to the differences in climate sensitivity in climate models [Bony and Dufresne,24

2005]. The persistent diversity of model estimates of cloud feedbacks has inspired efforts25

to determine the magnitude and sign of the feedbacks from observations. Feedbacks de-26

termined from secular trends in surface temperature and cloud properties [Eastman et al.,27

2011; Seethala et al., 2015] remain highly uncertain due to the small signal of warming in28

the satellite epoch and the large observational uncertainties inherent in trying to measure29

small changes in cloud properties over time with ever-changing observing systems. Feed-30

backs might also be directly estimated from observations by assessing the sensitivity of31

cloud radiative effect to interannual variations in surface temperature either locally [Eitzen32

et al., 2011; Bellomo et al., 2014] or globally [e.g. Dessler , 2010; Zhou et al., 2013], where33

global changes are driven primarily by the El Niño–Southern Oscillation. This approach34

assumes that environmental changes from small-amplitude short-term variations are con-35

sistent with those under long-term, larger amplitude climate change, as is supported by36

the behavior of climate models [Zhai et al., 2015; Zhou et al., 2015].37

Observed relationships between clouds and their environment have also been used to38

inform model projections. One approach is to assume that models that more closely re-39

produce observed relationships are more likely to provide realistic projections of future40

behavior [e.g. Clement et al., 2009; Myers and Norris , 2015] although model weighting,41
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including the rejection of models based on their ability to satisfy certain observational cri-42

teria, is not always well-justified [Klocke et al., 2011; Caldwell et al., 2014]. Alternatively,43

relationships observed in the past can be applied to future changes in environmental con-44

ditions as simulated by climate models [Qu et al., 2014, 2015]. This exploits the larger45

environmental changes expected in a warmer world and provides a point of comparison for46

similar predictions from idealized [Caldwell et al., 2013] or highly-detailed process models47

[Bretherton et al., 2013; Bretherton and Blossey , 2014].48

Progress to date has exploited variations in environmental parameters on time scales49

of a month or longer in order to reduce observational uncertainty. But the times scales50

on which clouds adjust to their environment are much shorter – typically hours for tem-51

perature and humidity within the cloud layer, and on the order of days for the depth52

of the combined boundary- and cloud layers [Schubert et al., 1979; Bellon and Stevens ,53

2013; Jones et al., 2014] – and relationships between clouds and their environment also54

change with time scale [c.f. Klein and Hartmann, 1993; Klein, 1997]. As one relevant55

example, the character of cloudiness is closely tied to subsidence at monthly time scales56

[Bony and Dufresne, 2005] but day-to-day variations are controlled far more strongly by57

the height and strength of the boundary layer inversion [Brueck et al., 2015; Nuijens et al.,58

2015], which reflects a balance between subsidence and surface forcing established over59

multi-day to weekly scales. Most efforts to determine the sensitivity of cloud properties60

to their environment have also been restricted to particular geographic regions, frequently61

those in which highly reflective marine stratocumulus are common, although low cloud62

feedbacks in climate models extend throughout the tropics [Soden and Vecchi , 2011].63
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Here we take a novel approach to estimating feedbacks from tropical low clouds stressing64

observations on time scales commensurate with those on which clouds are coupled to their65

environment and spanning the entire tropical ocean. We use satellite observations and66

meteorological reanalysis to build statistical models describing the dependence of low67

cloud albedo on environmental state on the short time scales at which clouds respond68

to their surroundings. Descriptions of environmental states in the present-day and in a69

future with uniform surface warmer are obtained from climate models. Our expectation70

is predictions of changes in atmospheric state by climate models are more robust than71

those of cloudiness or sea surface temperature, even if the present-day states may be in72

error. After correcting these states for errors in the representation of the present day73

we apply the statistical models to these states to estimate the distributions of low cloud74

albedo in the present and in the future. The difference between these albedos provides a75

feedback estimate consistent with observed present-day relationships between clouds and76

their environment.77

2. Observed relationships between low cloud albedo and environmental

conditions

To estimate cloud feedbacks from tropical oceanic low clouds we combine relationships78

between albedo and environmental state observed in the present day with estimates of79

how the distribution of states may change to infer the change in cloud albedo expected80

with warming. We focus on albedo itself because changes in reflection can be directly81

related to cloud feedbacks and to avoid quantitative difficulties in retrieving cloud fraction82

and cloud optical thickness [e.g. Pincus et al., 2012], the two main controls on albedo,83
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where clouds sizes are commensurate with underlying sensor resolution. We neglect cloud84

impacts on terrestrial radiation entirely as these are quite small. Our domain encompasses85

all the tropical oceans equatorward of 30◦ latitude including much but not all of the86

stratocumulus regions.87

2.1. Albedo and environmental state at daily timescales

Observations of low cloud albedo and estimates of the environmental state are obtained88

for the two-year period June 2009 to June 2011. Estimates of low cloud albedo are89

derived from Edition 2.6 of the Clouds and the Earth’s Radiant Energy System (CERES)90

SYN1DEG dataset [Doelling et al., 2013]. CERES observations are available as day-time91

averages on a 1◦ latitude-longitude grid. Observations from Terra (morning) and Aqua92

(afternoon) platforms are averaged together. We exclude 1◦ regions in which aerosol93

optical depth at 0.55 µm is greater than 0.5, which comprise less than 1% of the tropical94

observations, and focus on low clouds (and cloud-free skies) by considering only those95

1◦ regions in which mean cloud-top pressure exceeds 700 hPa. In the CERES SYN1DEG96

dataset high clouds cover about 43% of the 1◦ daily observations in the time two-year97

window we consider. Like the CERES Energy Balanced and Filled data [EBAF, Loeb98

et al., 2009] SYN1DEG observations use observations from geostationary satellites to99

account for changes in cloud properties over the course of the day, but EBAF data are100

not available at daily time scales.101

CERES converts measured broadband intensity to estimated hemispheric flux using em-102

pirical angular distribution models developed by accumulating observations of intensity103

made at different directions over time, controlling for the surface and fine-scale distri-104

D R A F T January 28, 2016, 3:53pm D R A F T



X - 8 PINCUS ET AL.: LOW CLOUD FEEDBACKS FROM DAILY OBSERVATIONS

bution of cloud properties with each radiometer field of view [Loeb et al., 2005]. The105

self-consistency of these angular distribution models [Loeb et al., 2007] suggests that, for106

the oceanic low clouds with which we are concerned, the root-mean-square relative error107

in albedo is roughly 2.1% for overcast footprints of moderate optical depth and 4.7%108

for partly cloudy footprints of low optical depth. This error decreases with averaging so109

instantaneous estimates at 1 ◦scales are smaller than single footprint errors.110

Tropospheric profiles of temperature, humidity, and wind at fixed pressure levels, esti-111

mates of surface temperature and latent and sensible heat fluxes, and integrated water112

vapor path come from the ERA-Interim reanalysis [Dee et al., 2011]. From these we com-113

pute lower tropospheric (thermal) stability LTS ≡ θ700 − θ1000 [where θp is the potential114

temperature at p hPa, Klein and Hartmann, 1993] and the rate of change of sea surface115

temperature following the local 1000 hPa wind SSTadv = ~u1000 · ∇SST. Daily-averaged116

values are computed from the six-hourly fields provided by ERA-Interim.117

Reanalysis fields in the tropics are more poorly constrained by observations than over118

mid-latitudes, especially in the lower troposphere where the microwave and infrared sound-119

ing instruments aboard satellites have little sensitivity. Our estimates of environmental120

conditions may therefore be somewhat biased by errors in the forecast model used to121

produce ERA-Interim, although we have focused on meteorological fields that are either122

well observed (and so well constrained in the reanalysis, e.g. sea surface temperature or123

free tropospheric humidity) or strongly constrained by atmospheric processes (e.g. near-124

surface temperature and humidity over the ocean).125
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The grids on which ERA-Interim and CERES data are available have the same 1◦ res-126

olution but they are shifted by half a degree relative to one another, so we interpolate127

the ERA-Interim estimates of state to the CERES grid. Data volumes are reduced by128

sampling every ten days and by matching states to albedos only for the low-cloud scenes129

identified by CERES. The resulting data set contains roughly 155000 samples.130

We also obtain the distribution of environmental conditions in the present-day and in131

idealized future climates by extracting daily-averaged fields from seven climate models132

(listed in Table 1) participating in the second phase of the Cloud Feedback Model Inter-133

comparison Project (CFMIP-2; see http://cfmip.metoffice.com), itself a component of134

fifth phase of the Coupled Model Intercomparison Project [CMIP5, see Taylor et al., 2012].135

Model-specific estimates of present-day climatology come from three years (1997-1999) of136

daily data from “AMIP” runs in which sea surface temperatures are specified. The time137

period differs from the period in which ERA-Interim and CERES observations were ob-138

tained because the AMIP experiments end in 2005. Conditions in the model amenable to139

high clouds are removed by eliminating columns in which the albedo of model-predicted140

mid- and high-clouds exceeds 1%. Mid- and high-cloud albedo is determined using the141

two-stream approximations applied to those elements of the joint distribution of optical142

thickness and cloud-top pressure reported by the “ISCCP simulator” [Klein and Jakob,143

1999] with values of cloud-top pressure less than 700 hPa. Climate model fields are sam-144

pled in time to roughly match the sample size of the CERES/ERA-Interim data; the145

extent of this sampling depends on the spatial resolution and frequency of high clouds146

in each climate model. We determine albedo for the remaining columns as the ratio of147
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reflected to incident solar radiation at the top of the atmosphere. Estimates of idealized148

future conditions are obtained from “AMIP+4K” simulations in which sea surface tem-149

perature is uniformly increased by 4K. The seven models are all those for which the daily150

data we require (from the so-called ’cfDay’ table) is available for both the AMIP and151

AMIP+4K experiments.152

2.2. Describing relationships between albedo and environmental conditions

We build two classes of statistical models to describe relationships between daily-153

averaged low-cloud albedo and daily-averaged environmental conditions: one using mul-154

tiple linear regression and another using nonlinear, non-parametric Bayesian neural net-155

works following Chapter 10 of Bishop [1995]. The statistical models are trained on half156

the available data and tested against the other half to guard against fitting the model to157

random noise (over-fitting). We estimate model uncertainty using ten realizations, each158

trained on independent samples of half the available observations.159

Statistical models can be built for arbitrary sets of environmental variables. We use an160

expansive state vector sss that includes essentially all environmental parameters thought to161

control boundary layer cloudiness [c.f. Bretherton et al., 2013; Myers and Norris , 2015; Qu162

et al., 2015]: sea surface temperature and its advective tendency following the 1000 hPa163

wind, pressure vertical velocity at 700 hPa, scalar wind speed at 1000 hPa, the specific164

humidity difference between these levels LTH ≡ q1000−q700 and its thermodynamic analog165

LTS, described above, and the vertically-integrated water vapor path. The state vector166

also includes the cosine of the solar zenith angle at solar noon to account for the variation167
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in albedo with illumination angle. For illustrative purposes we also build a reduced state168

vector ŝ̂ŝs that includes only solar zenith angle, LTS, and SST.169

We build four statistical models (linear and nonlinear, using sss and ŝ̂ŝs) for the observations170

and for AMIP conditions in each of the climate models listed in Table 1. As might be171

expected, the richer state vector sss (filled symbols in Figure 1) is better able to fit albedo172

to environmental conditions than ŝ̂ŝs (open symbols) regardless of the statistical model173

used, and nonlinear neural networks (circles) are better at fitting the relationships than174

is linear regression (squares). Here we assess skill using a close analogy to the R2 metric175

used in linear regression (1 minus the root-mean-square error in albedo predicted by176

the statistical model divided by the standard deviation of true albedo, evaluated against177

independent testing data and averaged over ten realizations). Observational uncertainty in178

both CERES estimates of albedo and ERA-Interim estimates of environmental parameters179

might be expected to make relationships noisier and less predictable, especially at daily180

times scales, than for the perfectly-known quantities from climate models, but in fact the181

models based on observations (shown in black) fit about as well as do models for some182

simulations, partly because low-cloud albedo is less variable in observations than in any183

of the climate models (colored symbols).184

3. Future changes in tropical low cloud albedo

Low cloud feedbacks can be estimated by applying statistical models trained on present-185

day data to estimates of future conditions (here, taken from climate model AMIP+4K186

simulations described above) to determine albedo changes relative to present day. One187

danger is that statistical models, no matter how sophisticated, may not be accurate for188
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input data very different from the sample on which they are trained. Extrapolation to189

+4K conditions is not extreme relative to present-day variability (the standard deviation190

of SST in the ERA-Interim samples is 2.98K but it is possible that applying present-191

day albedo/environment relationships to these conditions will lead to errors in estimated192

albedo. We assess this risk using “perfect-model, perfect-observation” experiments, com-193

paring the true change in mean low cloud albedo between present-day and +4K conditions194

in each climate model to the change predicted by statistical models trained on the climate195

model’s own present-day conditions (Figure 2). Here and below we report changes in mean196

low cloud albedo because this quantity controls feedback, but the mean is computed over197

roughly 155000 samples with ten realizations of each statistical model.198

In all but one of the climate models low cloud albedo decreases in warmer climates,199

while extrapolation with statistical models predicts less dimming or even brightening.200

Neural networks have larger uncertainties when extrapolated than do regressions: the201

standard error of the prediction across ten realizations of all statistical models (colored202

lines) is relatively large for the neural networks and hardly visible for linear models. To203

the extent that Fig. 2 is indicative of general behavior it suggests that extrapolation to204

future conditions with statistical models will introduce errors in the sense of predicting205

overly bright low clouds in future.206

The extrapolation in Fig. 2 includes only changes induced by 4K warming within

each climate model. Applying statistical models based on observations to climate models

states involves further extrapolation because the distribution of states in each climate

model differs from the distribution of states obtained from ERA-Interim. We therefore
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apply a correction to each climate model state vector sssGi

sss′i = µµµE + VVV E

√
λE

λG
(VVV G)ᵀ(sssGi − µµµG) (1)

where µµµE and µµµG are the mean state vectors and λE, λG,VVV E and VVV G the eigenvalues and207

eigenvectors, respectively, of the covariance matrix for present-day conditions in ERA-208

Interim and the climate model in question. We apply a similar correction to ŝ̂ŝsi. The209

correction ensures that the mean values and covariance matrix of the climate model’s210

present-day distribution of states match those from ERA-Interim. (After correction the211

mean albedo of all climate models also matches the CERES estimate, which represents212

an independent check on the utility of the correction for the nonlinear models.) The same213

adjustment is applied to the distribution of AMIP+4K states.214

We estimate the change in low cloud albedo with warming by applying statistical models215

describing observed relationships between albedo and environment to present-day and216

+4K conditions. The statistical models describe CERES low cloud albedo as a function217

of ERA-Interim environmental; a range of possible changes in future conditions is obtained218

from the adjusted distribution of state variables produced by each climate model under219

present-day and +4K conditions. Every estimate made with the extended set of variables sss220

indicates less reflective low clouds in warmer conditions (closed symbols along the abscissa221

of Figure 3) while estimates using only SST, LTS and cosine of the solar zenith angle (ŝ̂ŝs) on222

daily time scales indicate neutral or slightly brighter clouds, in contrast to the sensitivity223

inferred from observations on longer time scales [Qu et al., 2014; Myers and Norris , 2015;224

Qu et al., 2015].225
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As an attempt to isolate the contribution of large-scale circulation changes with warm-226

ing the ordinate in Figure 3 shows the values of albedo change including all changes to227

environmental conditions except sea surface temperature. In models using ŝ̂ŝs albedo is228

strongly sensitive to SST, whose change is specified across the models, explaining why229

the range of albedo change is quite small across different sets of future climate model230

environmental states. Models using the richer state vector sss show relatively little sensi-231

tivity to SST, however, because the true control on low cloud albedo is via dependencies232

on surface fluxes and boundary-layer humidity [Qu et al., 2015]. Changes in albedo with233

warming are roughly consistent between the two classes of statistical models although the234

nonlinear neural networks are more uncertain as judged by the standard deviation across235

independent data samples (see also Fig. 2).236

Predicted albedo change can be converted to climate feedback: the daytime mean in-237

solation over our domain is 763 W/m2 so, to the extent that low clouds are uniformly238

distributed within the tropics, a 1% change in albedo for a 4 K temperature change in-239

dicates a daily-average low-cloud feedback of -0.954 W/m2 −K. Given this scaling linear240

regression provides a tropics-wide low-cloud feedback estimate of 2.95± 1.51 W/m2 −K241

and the nonlinear models 2.66 ± 1.16 W/m2 −K [comparable to the values from large-242

eddy simulation in Figure 5 of Bretherton, 2015], where the standard deviation accounts243

only for variations in future environmental conditions among climate models.244

With one exception, present-day relationships between albedo and environmental con-245

ditions imply even greater reductions in tropical low cloud albedo than do the climate246

models used here (Figure 4). Most climate models in our set already produce low cloud247
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dimming with warming i.e. positive tropical low cloud feedbacks; taken on its face Fig. 4248

rules out the possibility of negative feedback and implies that the strength of the feedback,249

which applies to roughly a quarter the planet’s surface, is underestimated by the climate250

models by a factor of 2-4. Evidence from perfect-model, perfect-observation experiments251

(Fig. 2) suggests that predictions of cloud albedo by statistical models applied to warmer252

conditions are brighter than the true outcome, so that the more positive feedback inferred253

from observations may itself be an underestimate.254

4. Accumulating evidence for positive tropical cloud feedbacks

Our estimate of tropical low cloud feedback uses observations obtained over the entire255

tropical oceans at the time scales to which clouds respond to their environment (and on256

which process modeling is usually performed). Using daily observations also lets us ex-257

ploit both the relatively short but high-quality observational record of flux from CERES258

as well as the relatively large co-variability in environmental state at short time scales.259

Because the change in environmental states is determined from surface warming in the260

absence of radiative forcing our estimates are restricted to temperature-dependent feed-261

backs while the changes realized in coming years will also include adjustments [Sherwood262

et al., 2015] due to changes in CO2 and other forcing agents. Applying a single set of263

observationally-based relationships between low cloud albedo and environmental state to264

future states estimated by climate models is consistent with the idea of correcting cli-265

mate model sensitivities [Qu et al., 2015] although it does not allow for feedbacks between266

clouds and atmospheric state.267
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Extrapolation with statistical models to future conditions in climate models underesti-268

mates the realized low cloud dimming with warming, implying that our positive estimates269

of tropical low cloud climate feedbacks may be biased towards smaller-than-realistic val-270

ues. The sense of positive tropical low cloud climate feedbacks we infer, however, is271

consistent with a wide range of other approaches relying on observations at longer time272

scales [Clement et al., 2009; Myers and Norris , 2015; Qu et al., 2015, among others] and273

with insights from process-scale modeling [see Bretherton, 2015, for a thorough discus-274

sion] emphasizing increased vertical mixing with warming. Given observational evidence275

for positive high cloud feedbacks in the tropics [Xu et al., 2007; Zelinka and Hartmann,276

2011; Li et al., 2012] the overall evidence for positive cloud feedbacks on climate is in-277

creasingly strong.278
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Figure 1. Skill in statistical models fitting low cloud albedo to environmental conditions

at daily time scales. Nonlinear, non-parametric models (circles) are better able to fit albedo to

environmental conditions than is multiple linear regression (squares) and a richer set of predictors

(closed symbols) leads to better fits and lower error than a reduced set (open symbols). Skill

is measured against independent testing data as 1 minus the root-mean-square error divided by

the standard deviation of albedo. Low-cloud albedo measured by CERES (black) is somewhat

less variable, and somewhat easier to fit to environmental conditions, than is albedo from most

available climate models (colors).
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Climate model albedo change (%)
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Figure 2. Change in low-cloud albedo (%) in seven climate models between +4K and present-

day conditions predicted by statistical models as a function of the true warming. The diagonal line

indicates equality. The statistical models are trained on albedo and environmental conditions

for each climate model (distinguished using the same color scheme as in Fig. 1) separately.

Nonlinear models extrapolate less well to future conditions and hence are substantially more

uncertain as indicated by the standard deviation among ten independent realizations (vertical

bars). Essentially all climate models produce less reflective low clouds in warmer conditions;

statistical models either underestimate the amount of dimming or predict more reflective low

clouds.D R A F T January 28, 2016, 3:53pm D R A F T
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Figure 3. Change in low-cloud albedo (%) predicted by applying statistical models trained

on present-day observations to changes in the distribution of environmental states predicted by

climate models when sea surface temperature is raised uniformly by 4 K. Values on the abscissa

show the albedo change associated with warmer conditions; values on the ordinate show the

change due to “circulation” diagnosed by suppressing the sea surface change. Each percentage

change in albedo corresponds to a low cloud feedback of 0.954 W/m2 −K The diagonal line

indicates equality.
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Figure 4. Change in low-cloud albedo (%) predicted by statistical models as a function

of the albedo change predicted by the climate models themselves. The diagonal line indicates

equality. Although most climate models predict less reflective low clouds in warmer conditions,

observed relationships between albedo and environmental state suggest that this dimming is

under-predicted, while perfect model results in Fig. 2 suggest that even the statistical predictions

of future low cloud albedo are too bright.
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Table 1. Atmospheric models used to estimate future changes in environmental conditions

CMIP5 model name Institution Reference

Can-AM4 Canadian Centre Climate Modeling and Analysis von Salzen et al. [2013]
CCSM4 National Center for Atmospheric Research Gent et al. [2013]
Had-GEM2-A UK Met. Office The HadGEM2 Development Team G M Martin et al. [2011]
IPSL-CM5A-LR Institut Pierre Simon Laplace Dufresne et al. [2013]
MIROC Atmosphere and Ocean Research Institute Watanabe et al. [2011]
MPI-ESM-LR Max Planck Institute for Meteorology Stevens et al. [2013]
MRI-CGCM3 Meteorological Research Institute Yukiomoto et al. [2012]
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